If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+980X-3000=0
a = 1; b = 980; c = -3000;
Δ = b2-4ac
Δ = 9802-4·1·(-3000)
Δ = 972400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972400}=\sqrt{400*2431}=\sqrt{400}*\sqrt{2431}=20\sqrt{2431}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(980)-20\sqrt{2431}}{2*1}=\frac{-980-20\sqrt{2431}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(980)+20\sqrt{2431}}{2*1}=\frac{-980+20\sqrt{2431}}{2} $
| 0.06x=6 | | 4^2x-3=32^3x+1 | | x2-5x+5=-1 | | 4^2x-3=32^3x | | z/9+5=9 | | 2−3p=−3p+5 | | 2w-3)/6=4 | | s/7-17=220 | | -2-4x=3 | | 7x+14=4*8 | | -13-3x=3x-16 | | 4y=3y+6 | | -.02d^2+1.1d+6=0 | | 2w-1=4+w | | -4.8=-1.3k+2.7 | | -13=6x-2 | | 3·2^3x+9·2^2x=−6·2^x | | 10x+4=4x+25 | | 6m=$9.30 | | 4x^2–8=0 | | 5-x=9-2x | | 5–3(x+2)=x–1 | | 4(y-11)(y-8)=0 | | 3(x+4)=4(-2x+3) | | 10(4+5g)=4g | | 3x^2+25x+18=0 | | |7v+6|=48 | | 7+3(5d-2)=13+15d | | -4(y-2)=2(-2y+7) | | 12(x-12)=12x-24 | | 0.2x=x-7500 | | 2(5r+4)+5=10r+9 |